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Abstract 

Many of the problems facing physicists and applied mathematicians 
involve difficulties as nonlinear governing equations, variable coefficients, and 
nonlinear boundary conditions at complex known or unknown boundaries that 
preclude solving them exactly. Manifolds and optimal control were used to better 
understand trajectories in the circular restricted three-body problem. Equations 
of this problem were used to generate two-dimensional and three-dimensional 
stable and unstable invariant manifolds. 

The instability of  periodic orbits and similar periodic solutions can be 
exploited to analyze paths to and from every point on a given orbit. This work 
presents a systematic method for the designin of impulsive low-energy transferes 
between the Earth and the Moon by the explicit using invariant manifold theory. 
Invariant manifolds are tube-like structures along which a spacecraft may 
travel using no energy and this techniques usually only provied trajectories for 
uncontrolled spacecraft. 

The numerical integration requires an initial position and velocity so that 
it can generate a trajectory over a specified time interval. A zero initial velocity 
is required to find the stable manifold to travel to a Lagrange point. The stable 
manifold can be propagated forward and backward in time so that a spacecraft is 
able to travel to and from a Lagrange point on the manifold. Finally, this paper 
discusses the tools used to generate the trajectories in this work. In this study all 
units of physical quantities are non-dimensional form and the results are plotted 
using numerical methods in MATLAB.

Keywords: Invariant manifold, nondimensional, low-energy transfer 
trajectories.  

1 Applied and Natural Sciences Department, “Aleksander Moisiu” University, Durres, Albania
2 Applied and Natural Sciences Department, “Aleksander Moisiu” University, Durres, Albania



14 Interdisciplinary Journal of  Research and Development, Vol. 5, no. 3, 2018

1. Introduction

Humans have not traveled to the moon since 1972, and that is the farthest 
we have travelled. If this mission develops, it will be the farthest humans 
have traveled in the solar system. This would encourage practical technology 
development, for creating the longest manned mission would introduce many 
constraints, but also could provide many answers. This would be a critical 
stepping stone in developing technology for manned missions to other 
planets, such as Mars. It could also provide valuable scientific information 
about the far side of the moon, and humans could deploy instruments or 
control a rover. 

In 2000, Koon et al., constructed a planar lunar transfer that was almost 
entirely ballistic using the techniques involved in Conley’s method. Following 
(Conley, Koon et al. 2000) observed that the planar libration orbits act as a 
gateway between the interior and exterior regions of space about the constructed 
a trajectory that targets the interior of the stable invariant manifold of a planar 
libration orbit about the Earth–Moon L2 point. Once inside the interior of the 
stable manifold, the spacecraft ballistically arrives at a temporarily captured orbit 
about the Moon. Many authors have debated what it means to be temporarily 
captured at the Moon; Koon et al., define a similar term, “ballistically captured” 
to be a trajectory that comes within the sphere of influence of the Moon and 
revolves about the Moon at least once. There is much literature on invariant 
manifolds and connecting orbits in the CR3BP; see for example G´omez et 
al. (2004); Koon et al. (2008); Lo and Ross (1997); Davis et al. (2010, 2011); 
Tantardini et al. (2010).

Further advances have been made since 2004 to apply dynamical systems 
theory to the generation of three-dimensional low-energy lunar transfers. Parker 
mapped out numerous families of low-energy transfers, illuminating different 
geometries that are available for spacecraft to travel to the Moon and arrive in 
lunar libration orbits without requiring any capture maneuver. Several authors 
have begun applying low-thrust techniques to further improve low-energy 
transfers, including transfers from the Earth to the Moon and transfers from 
one libration orbit to another. In 60 years, research has advanced the knowledge 
of lunar transfers from the early spacecraft missions that implemented direct 
lunar transfers to modern analyses that reveal maps of entire families of low-
energy transfers to the Moon. The Earth-Moon Lagrange point on the back side 
of the moon, commonly known as L2, has been of recent interest in the space 
community, specifically for a human mission. The L2 point is a point of neural 
gravity from the gravity fields of the Earth and the Moon and located on the far 
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side of the moon. A human mission to the Earth-Moon Lagrange point, L2, has 
recently been a point of interest. This topic was discussed most recently at the 
International Astronautical Congress (IAC) in Naples in October 2012 by space 
agencies such as NASA and Boeing. 

2. Methodology and Invariant Manifolds

This section introduces the methodology used in the analysis and 
construction of invariant manifolds. The paper begins by simply defining the 
physical constants used in these analyses, including the masses and radii of the 
Earth, the Moon, and the small particle in the Earth-Moon system. It then defines 
the time systems used, coordinate frames, and models, including the circular 
restricted three-body problem. This problem describes a dynamical model that is 
used to characterize the motion of a small particle, in the presence of two massive 
bodies. The model assumes the two massive bodies orbit their barycenter in 
circular orbits. Coordinate systems include a reference frame and an origin, and 
are often rotating or translating relative to other bodies. A coordinate system is 
inertial only when it is not accelerating. When referencing motion in the Solar 
System, the only truly “inertial” coordinate system is one that is not rotating and 
centered at the Solar System barycenter. Strictly speaking, no Earth-centered 
coordinate system can be inertial, even one that is not rotating, since the Earth 
is accelerating in its orbit as it revolves about the Sun. Although it is inaccurate, 
coordinate systems may be referred to in this paper as “inertial” when they are 
merely nonrotating. 

In order to generate a manifold for this problem, the two or three-dimensional 
nonlinear equations of motion were numerically integrated. The state-space 
representation of the equation of motion was programmed into MATLAB. The 
set of four or six, first order, nonlinear equations were numerically integrated 
using the Runge-Kutta method. 

Especially, all asymptotic orbits, which are asymptotic to the periodic orbit, 
form a tube which is called invariant manifold, can present lots of advantageous 
of mission design. Invariant manifold is also a boundary that separates the transit 
and non-transit tubes. Transit orbits are always in invariant manifold tube and 
can pass to one region to another. Invariant manifold are depending on periodic 
orbits around equilibrium points, and they can be computed thanks to them. But 
there are various periodic and quasi periodic around there, so which Asymptotic 
orbits relate which periodic orbits? This is very easy, while in Planar-CR3BP 
there is only one unique periodic orbit around unstable equilibrium point in each 
specific energy. So that Asymptotic orbits and so invariant manifold must be 
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related with this periodic orbit. But in three-dimensional space, there are more 
than one periodic orbits in each specific energy, and all these periodic and quasi-
periodic orbits have their own asymptotic orbits and so invariant manifold. But 
in practically, three-dimensional-invariant manifold is computed with using 
either three-dimensional Periodic orbits, for easiness. In addition, a transit orbit 
seems out side of the manifold tubes while in three-dimensional space, this 
means that this transit orbits actually in another invariant manifold of another 
periodic orbits. 

These orbits are important for equilibrium point mission and capture 
transfer missions. They provide a way to get periodic to planet or moon, also 
capture trajectories are always inside the manifold tubes, and their intersection 
on Poincare surface of section provides optimum jumping point from one 
manifold to another. These orbits are used for ‘Low Energy Transfer’; they 
can be reduced mission cost, and have great potential for any flexible and 
rescue missions. Same as periodic orbits, there are two main way to compute 
these orbits, numeric method and LP method for analytic approach. Other 
efficient methods for computing invariant manifolds include semi-analytical 
approximations (Jorba et al. 1999; Alessi et al. 2009; G´omez and Mondelo 
2001). The latter methods are very precise in a neighborhood of the center of 
expansion, and rely on other methods to extend the manifolds outside these 
neighborhoods (G´omez et al. 2001). Invariant manifold techniques around 
libration points have been used successfully in mission design (Lo et al. 2004). 
The Genesis spacecraft mission, designed to collect samples of solar wind and 
return them to the Earth (Lo et al. 2001), is often considered as the first mission 
to use invariant manifolds for its planning, while other missions have used 
libration point techniques (Dunham and Farquhar 2003). Having a precise idea 
of the geometry of invariant manifolds and their connections is desirable in the 
design of complex low thrust missions.

3. Results

To generate trajectories that meet a variety of mission constraints, tools that 
provide insight into the available solution space are essential. The Poincare map 
is a powerful tool that, in combination with a constraint on the energy level, 
allows a reduction in dimension such that, for the planar problem, the system 
is reduced into two-dimensions and the phase space is fully represented by the 
projection onto a plane.  

We compute the intersection of the unstable manifold from L1 and 
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the stable manifold  from L2 with the space Σ1. Of course, we can do the 
symmetric counterpart: stable manifold  from L1 and unstable manifold  
from L2 with the space  Σ2 (see Figuure 1, A.Hysa, M. Klemo 2017). 

Figure 1 shows 4 manifolds in the “neck” region in the Earth-Moon system, 
two periodic orbits around fixed points and the location of the Poincare sections. 
Unstable  and stable  manifolds respectively from L1 and L2 stopping at 
the plane Σ1. Stable  and unstable  manifolds stopping at the plane Σ2. 

Fig.1. Stable (green) and unstable (red) manifolds associated with L1 and L2 periodic orbits (blue), 
respectively. The location of the Poincare sections Σ1 (yellow) and Σ2 (purple) are also shown.
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Figure 2. The stable invariant manifolds for an orbit about L2 
point of the rotating Earth-Moon system.

The stable and unstable manifolds for a symmetric orbit are themselves 
symmetric about the x axis. This is because the two experience equal and opposite 
rotation rates: counterclockwise for forward time (unstable) and clockwise for 
backward time (stable). Note that only one manifold exists for a certain direction 
of time. In other words, stable perturbations while moving forward in time do 
not create a stable manifold. They will simply damp out quickly, leaving no 
change. The same is true of unstable perturbations backward in time. If a particle 
is randomly perturbed while on the orbit, the particle will fall off of the orbit at 
an exponential rate. In Hamiltonian systems, not only are there asymptotic orbits 
departing from the unstable orbits, there are also asymptotic orbits approaching 
the unstable orbits. 
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Figure 3. The unstable invariant manifolds for an orbit about L2 point of the rotating Earth-
Moon system. 

Figure 4. Three-dimensional invariant manifold of L1 and L2. Green trajectories are stable 
manifold of outside, red trajectories are unstable manifold of outside, blue trajectories are stable 

manifold of inside, and purple trajectories are unstable manifold of inside.
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The set of all trajectories that asymptotically depart from the unstable orbit 
is known as the orbit’s unstable invariant manifold; the set of all trajectories that 
asymptotically arrive onto the unstable orbit is likewise known as the orbit’s 
stable invariant manifold. Figure 2 show the stable invariant manifold for a 
typical periodic orbit about the Earth-Moon L2 point and Figure 3 show the 
unstable invariant manifold. The manifolds are very similar for orbits about the 
L1 point. One can see the underlying tubular structure in the manifolds. As the 
manifolds approach one of the primaries, this structure begins to break down 
due to the large divergent behavior near the primaries. 

Mission designers may use these invariant manifolds to model the motion of 
spacecraft in their vicinity. If a mission’s objective is to transfer onto an unstable 
periodic orbit, then the spacecraft need only target that orbit’s stable manifold in 
order to insert into that orbit. Although missions such as ISEE3 and Hiten were 
not designed using invariant manifolds explicitly, the underlying dynamics may 
be understood using invariant manifold theory. The advantage of the dynamical 
systems approach is the ability to compute and visualize global families of low-
energy transfer trajectories, giving mission designers a priori knowledge of the 
underlying dynamics in the libration orbit regime. 

In Figure 4, hot color orbits (red and pink) are unstable manifold of 
equilibrium points which are departure from equilibrium point, and cool color 
orbits (green and blue) are stable orbits of equilibrium points which are arrival 
to equilibrium point.

  

Figure 5. Unstable invariant manifold of L1



21Interdisciplinary Journal of  Research and Development, Vol. 5, no. 3, 2018

In Figure 5, a wild unstable invariant manifold of L1 is shown, which might 
be actually any invariant manifold of any equilibrium point. As explained in 
methods and invariant manifolds section, an invariant manifold is obtained by 
disturbing a periodic orbit around L1: the initial conditions of each trajectory 
that forms the tube is obtained by making a tiny disturbance to a periodic orbit, 
at a particular phase. So the periodic orbit is subdivided into a series of discrete 
points and each point is denoted by a trajectory number which is also called 
“manifold number” in this paper for easiness. This will compose one strand of 
the invariant manifold.

4. Conclusions 

The instability of periodic orbits and similar periodic solutions can be 
exploited to analyze paths to and from every point on a given orbit. While there 
are infinitely many of these paths, they all belong to a well-defined set called a 
manifold. Figure 2 shows two manifolds in the Earth-Moon system. The first, 
in green, is the stable manifold. This is the set of trajectories moving forward in 
time that asymptotically approach the periodic orbit. In contrast, the second plot 
in red depicts the unstable manifold, which departs the periodic orbit over time.

This paper has demonstrated how invariant manifold theory may be used to 
construct and understand three-dimensional ballistic lunar transfers. A spacecraft 
on such a transfer could remain on the periodic orbit, freely transfer to another 
libration orbit, freely transfer to a temporarily captured orbit about the Moon, or 
perform another maneuver to inject into any lunar orbit. The transfer implements 
three-dimensional libration orbits as staging orbits in the Earth-Moon three-body 
systems. Other orbits could be used to produce similar results. The advantages 
of the three-dimensional approach, compared with the two-dimensional work 
produced by Koon et al., include access to inclined lunar orbits, the option to 
use inclined Low-Earth-Orbit parking orbits, access to other regions of space in 
the Earth’s neighborhood, and better communication geometry. The Shoot the 
Moon transfer requires less energy than conventional Hofmann transfers, but 
requires a much longer transfer time. Such low-energy transfers are useful for 
cargo transport and robotic missions to lunar orbits or to the surface of the Moon.  

The approach used in this paper is robust enough to identify families of 
ballistic lunar transfers, including transfers that use other types of unstable orbits 
as staging orbits. These families will be explored and presented in future papers. 
Further analysis of the structure of the invariant manifolds of three-dimensional 
orbits in the spatial CR3BP may provide additional understanding of these lunar 
transfers, which may present alternative approaches for the construction and 
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analysis of ballistic lunar transfers. The methods presented by Gómez et al. 
2004, for example, may offer such an alternative. 
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