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Abstract 

The first aim of this paper is to find the locations of two Lagrange Points (LP) L1 and L2, 

calculate the Jacobi constant, to study the motion of a “test particle” inside the Earth-Moon 

system and then, the aim of this paper is to calculate and construct stable and unstable invariant 

manifolds through numerical iterative methods. We will present the results graphically and from 

these results we will give the appropriate explanations as to how a test body moves under the 

action of the gravitational field of two other massive bodies, such as Earth and Moon.  

First, two periodic orbits around the two Lagrange points L1 and L2 are calculated. Then, in 

relation to these orbits, we have constructed the respective manifolds by making the careful 

choice of the initial conditions.  

Manifolds are used in different fields and have many important applications. In the field of 

Mechanics of Celestial Bodies and Astrodynamics, they are mainly used to better understand 

how the trajectory of a test celestial body in space would be. 

From many numerical tests, we found the appropriate initial conditions for the problem under 

consideration and then using the corresponding algorithm and writing the code in the MATLAB 

software, we have managed to find the Periodic Orbits (PO) and construct the stable and unstable 

manifolds of these orbits. 

Keywords: Invariant Manifolds, Lagrange Points (LP), Periodic Orbits (PO), Earth-Moon 

system, MATLAB software.  

1. Introduction

Throughout time and up to the present day, humanity has always been curious about the space 

beyond the planet in which we live, Earth. People are curious about how we can get to other 

bodies in space. The Sputnik 1 (an artificial satellite) was the first and most famous satellite 

launched from Earth in human history. This satellite was launched by the former Soviet Union in 

1957 (Bertachini et al., 2013). This was a very important step for science in particular and 

humanity in general. Then, with the further development of space missions, human reached the 

Moon for the first time in 1969 (Bertachini et al., 2013). Today, many techniques are focused on 

the investigation and design of the artificial satellite’s trajectories, spacecraft trajectories and 

space telescopes. To realize this objective, one of the techniques is through the invariant 

manifolds of CR3BP (More A., Ober-Blöbaum S., & Marsden J., E., 2012). Many researchers 

have done research and studies about the method of manifolds. For example, in a publication 

presented by Trusdale, the method of invariant manifolds is used to analyze the path that the 

space telescope must follow to get to the Lagrange points (Trusdale, 2012). In his study, he 

analyzed asteroid mining in the Lagrange point L2 for the Sun-Earth system, and the transition of 

matter from L2 point to the Earth-Moon system (Trusdale, 2012). Some other authors such as 

Belbruno, Gidea and Topputo use the separatrix property of invariant manifolds of periodic 

orbits around the Lagrangian points and show that, under certain conditions, points on stable 
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manifolds are WSB points (Belbruno, Gidea and Topputo, 2010). The L2 Lagrange point in the 

Earth-Moon system has been and continues to be of recent interest for space missions. Also, the 

L1 point in this system is important. In general, these points are important for other systems 

within the solar system as well as outside it. The importance of the L2 point was discussed at the 

International Astronautical Congress (IAC) in Naples in October 2012 by space agencies such as 

NASA and Boeing.  

Based on the fact that these points are important, in our study, we have focused only on these 

two points for the Earth-Moon system. Periodic orbits around these points are of particular 

importance. We have constructed these orbits and presented them graphically. Then, in relation 

to these orbits, we have constructed stable and non-stable invariant manifolds.  

The remainder of this paper is organized as follows. Section 2 describes the materials and 

methods used in this study. We use a gravitational model of the circular restricted three-body 

problem and some numerical techniques, such as Runge – Kutta – Fehlberg (RKF 45). In section 

3, we describe our results and discussion, and our conclusions are presented in section 4.  

2. Materials and methods

Many of the problems studied by Physicists and Mathematicians have a non-linear nature. Most 

of these problems do not have a general analytical solution. One of these is the problem with 

many bodies, such as, for example, the movement of celestial objects.  

In the standard three-body problem, three masses are in gravitational interaction with each other. 

Based on the second law and the law of the gravitation of Newton the Equations of motions for 

this system are (Newton, 1687; Curtis, 2014; James, 2006): 

(1) 

The system of differential equations (2) is non-integrable, unlike the problem of two bodies 

which is integrable (Poincaré, 1890). This system of nonlinear differential equations is very 

sensitive to the initial conditions (Poincaré, 1890). We are interested in special solutions for this 

system. Restricted 3-Body Problem (R3BP) assume  (two large masses  &  and one 

tiny one ) (Lagrange, 1772).  

We assume that a “test particle” P of negligible mass moves under the gravitational influence of 

Earth – Moon with masses  and , respectively.  We assume that the two masses have 

circular orbits about their common center of mass and that they exert a force on the particle 

although the particle cannot affect the two masses (Murray and Dermott, 1999). The primaries 

have constant separation and the same angular velocity as each other and their common center of 

mass (Murray and Dermott, 1999). In this case we have the CR3BP, Circular Restricted Three-

Body Problem (Szebehely, 1967; Murray and Dermott, 1999). The system is described in a 

rotating system, and mass is normalized with the mass parameter , where 

. The normalized mass primaries are  and  and the time unit is 

such that the orbital period T of primaries equals  and angular velocity is  (Szebehely, 
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1967; Murray and Dermott, 1999; Lu, J., Lu, Q., and Wang, 2011). We define the coordinates of 

 as  and the coordinates of  as . If the 

particle is located at , then the distance formula shows that the distances between the 

particle and the masses are (Murray and Dermott, 1999): 

(2) 

respectively.  

Equations of motion of the CR3BP in the rotating coordinate system are: 

, (3) 

where r is the position vector in the CR3BP, and the components of velocity of a test particle are 

, , , respectively to direction x, y and z, U-is the potential energy of the system. 

The CR3BP had five equilibrium points. These points are known as Lagrange points. In this 

study we focus only on the two Legrange points L1 and L2. We determined the position of these 

two points using numerical method. For this, we used an iterative method (Newton's method) to 

find the approximate root of nonlinear equation. This method is a root-finding algorithm in 

numerical analysis. The locations of triangular Lagrange points  and  are calculated based 

on an exact solution. The integral of motion (Jacobi constant) in the CRTBP is defined by 

equation (Jacobi, 1863; Paul Ricord Griesemer, 2009): 

(4) 

This quantity is very important because it plays the role of energy in this problem and is the only 

known conserved quantity for the CR3BP (reference).  

The system of equations of motion for CR3BP can be linearized in the form: 

(5) 

where 

(6) 
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is the Jacobian of the system and x is a vector with six elements. The general analytical solution 

of the linearized equation (5) around the Lagrangian points L1 and L2 is:  

   (7) 

where  dhe  are the eigenvalue and eigenvector (Strogatz, 1995).  

In this study we use the method of invariant manifolds. Manifolds depend on periodic orbits 

around the Lagrange points and they can be computed with respect to these orbits (Trusdale, 

2012).  

The unstable invariant manifold (MjoS) of an orbit contains the set of all trajectories that the test 

particle could have if it were to undergo a perturbation somewhere in that orbit in the direction of 

the unstable eigenvector of the orbit. Similarly, the stable invariant manifold (MS) of an orbit 

contains the set of all trajectories that the test particle can have, to asymptotically arrive at that 

orbit along the stable eigenvector of the orbit (Thurman, Worfolk, 1996; Parker & Anderson, 

2013; Trusdale, 2012). 

For a given state x = (x1, x2, x3, x4, x5, x6), of the periodic orbit around the Lagrange points, the 

stable and unstable manifold can be calculated from the linear approximation of the system, 

considering a small perturbation ε applied to x which becomes xs (resp. xjoS) and propagating the 

equations of motion backward (resp. forward) from xs (resp. xjoS), with: xS(t) = x(t) vS and 

xjoS(t) = x(t) vjoS (Parker & Anderson, 2013).  

Also, we used some numerical methods such as the Runge-Kutta-Fehlberg (RKF 45) method 

(Fehlberg 1960; Fehlberg 1968; Fehlberg 1969) to achieve the objectives of this study. The 

codes were built and tested the to model the trajectories of a test particle using MATLAB.   

3. Results and discussions

The results of this study come from the numerical calculations of the system of nonlinear 

differential equations of the second order for the CRTBP model. These numerical calculations 

were performed in the MATLAB software, from which the results are displayed graphically. 

This is one of the most powerful software for the quality of the results presented graphically. 

Some results are presented in the (x, y) plane and others in the (x, y, z) space.  

To generate the results, we consider the motion of a test particle in the x – y planes or in the 

space (x, y, z).  

The mass ratio for the Earth – Moon system was assumed to be . Using this value, 

we calculated the positions of the Lagrange points and the value of the Jacobi constant for each 

of these positions. , , 

. 

Figure 1 shows the position of the five Lagrangian points L1, L2, L3, L4, and L5, respectively. 

Planet Earth is the blue globe and the Moon is the black dot. The trajectory with green color is 

the Zero Velocity Curve (ZVC) for C=3.14. This trajectory defines the limits of the allowed zone 

and the forbidden zone of the test particle. The two black orbits that are difficult to distinguish in 

the Figure are the periodic orbits around the Lagrangian points L1 and L2. The initial conditions 

for these two orbits are respectively: for the periodic orbit around the point L1; 

x10=0.869581001; x30=0; x50=-0.05000012; x20=0; x40=-Velo(C,x10,x30,x50); x60=0; and for the 
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periodic orbit x10=1.1173275000001; x30=0; x50=-0.0300000012; x20=0; x40=Velo(C,x10,x30,x50); 

x60=0.  

If a test material point would start from the position with coordinates (-3.53983, -0.00976768, 

0.00330564) then it would move according to one of the sky-colored trajectories shown in Figure 

1. Then it would move according to the corresponding stable direction with the stable

eigenvector and it would end without being too perturbed periodic orbit around point L2. This is 

a stable manifold and is marked with the symbol . Figure 2 shows the  unstable 

manifold (set of trajectories in pink). This manifold shows the path along which the test material 

point would move in the unstable direction characterized by the unstable eigenvector. In Figure 

3, two manifolds are presented, one is stable (the set of trajectories with sky color) and the other 

is not stable (the set of trajectories with pink color). These two manifolds are calculated in 

relation to the periodic orbit around the point L1. The symbols of these manifolds are 

respectively  and . If a spacecraft were to start from the point with coordinates (-

0.728499, -0.0819635, 0.0624661), then it would follow the steady-state path shown by the sky-

color manifold and arrive close to the point L1 without being disturbed by external actions. Then 

it would orbit periodically around this orbit.  

These manifolds that we explained above, together with four other manifolds in the area near the 

Moon, can be presented in a summarized way in space (x, y, z), as in Figure 4. The coordinates 

x, y, and z are dimensionles. The two stable manifolds near the Moon are shown in blue, while 

the two non-stable manifolds are in red. Since these manifolds are not clearly distinguished in 

this summary figure, then we present it enlarged in the (x, y) plane. Here we clearly see these 

stable and non-stable trajectories. These manifolds are marked with symbols ,  and 

, , respectively. 
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Figure 1. The stable invariant manifold associated with the periodic orbit around the Lagrangian 

point L2. 

Figure 2. An unstable invariant manifold. 

Interdisciplinary Journal of Research and Development, Vol. 5, no. 3, 2018    18



Figure 3. Two manifolds calculated in relation to the periodic orbit around the point L1. The sky-

colored trajectories represent the stable manifold and the pink ones non-stable. 

Figure 4. Eight stable and non-stable manifolds in the Earth-Moon system in space. The set of 

orbits with blue color and color-sky color are stable, while those with pink and red color are not 

stable.  
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Figure 5. The manifolds of Figure 4 are presented in an enlarged manner near the Moon and two 

periodic orbits around points L1 and L2. In this case, the result is presented in the plan in such a 

way that it can be seen clearly.  

The color-sky trajectory presented in Figure 6 is the trajectory of a test particle in the Earth-

Moon system. In this result, the Earth is represented by a blue globe, the Moon by a black globe 

and point L1 by a green square. Initial conditions for the coordinates and velocity of the test 

particle in this case are: x0 = 0.8000012 (this is initial position near L1); y0 = 0; z0 = 0; vx0 = 0 

(this is the initial velocity according to direction x); vy0 = 0.19999 (this is the initial velocity near 

the manifold) and vz0 = 0. While Figure 7 shows the trajectory (in blue) of a test particle in the 

Sun-Earth system with initial conditions: x0 = 0.8500120134; y0 = 0; z0 = 0; vx0 = 0; vy0 = 

0.10000120032 and vz0 = 0. The result is presented in Cartesian space (x, y, z) in astronomical 

units. In this result, the Sun appears with a yellow globe and the Earth with a green globe. While 

point L1 in the Sun-Earth system is represented by a black square. The final result of this work is 

presented in Figure 8. This Figure represents an unstable manifold in the Sun-Earth system 

(Trajectory in pink) in the cartesian space (x, y, z). Again, in this case, Cartesian coordinates are 

presented in astronomical units.  

Figure 6. Test Particle Trajectory in CR3BP for . 
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Figure 7. Test Particle Trajectory in CR3BP for . This value correspond with 

the mass parameter of the Sun-Earth system.  

Figure 8. Unstable Manifold in CR3BP for the Sun-Earth system. 
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Some important results regarding the movement of a “test particle” under the action of the gravitational 

field of two massive bodies within our solar system have been presented in our previous work (Hysa, 

2016, Hysa, Klemo, Xhomara, 2016).  

4. Conclusion

The path to the Lagrange points, to send space telescopes there, is very important and a current 

challenge for scientists. In this paper we study a scarcely explored field of Celestial Mechanics 

and Astrodynamics. The main contribution of this study was to construction periodic orbits 

around the Lagrange Points (LP) L1, L2 and Invariant Manifolds within the Earth-Moon system. 

The problem we considered has to do with the relative movement of an astronomical test object. 

The movement of this object is described by a non-linear dynamic and its study is quite difficult 

and complex because such dynamics has a very high sensitivity to the initial conditions of the 

problem. But, we can study the behavior of this system from various initial conditions of 

coordinates and velocities.  
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