PHD candidate Gazmend KRASNIQI1 Prof.Dr. Kristaq FILIPI2

MODULE OF HOMEOMORPHISMS TO MODULE

Abstract

In this article, after a concise presentation of the modules over rings as a generalization of vector space over the fields, their homeomorphisms are treated. Further builds R-module si R-module of morphisms of the modules.

Keywords: R-module, left (right) R-module, abelian group, associative ring, R-homeomorphisms

1. The meaning of the R-Module, feature

Let *M* be an non empty set of equipped with an internal algebraic action [2] marked with the symbol of collection $+$ and \bf{R} an associative ring whatsoever [3]. A set *M* is also equipped with an algebraic external action [2] indicated by the multiplication symbol \cdot , which, when reflecting $R \times M$ in *M*, is referred to as the left multiplication in *M* with elements from *R*, whereas, when reflecting the $M \times R$ in *M* is called right multiplication in *M* with elements from *R*. In the first case the couple's image $(r, m) \in R \times M$ is written $r \cdot m$, in the second case the couple's image $(m, r) \in M \times R$ is written *m·r*.

Definition 1.1 [1, 5, 6] In the above conditions, the left module above the *R* ring is called the structure $(M, +, \cdot)$, which has its own attributes:

¹ University of Vlora "Ismail Qemali", Faculty fo Technical Sciences, Department of Mathematics, Vlora, Albania;

Author of correspondence; Email: gazmend.krasniqi@hotmail.com

² Polytechnic University of Tirana, Department of Mathematics, Tirana, Albania

Interdisciplinary Journal of Research and Development, Vol. 5, no. 3, 2018 **77**

- $(M, +)$ *is an abelian group*; (1)
- $\forall (r_1, r_2, m) \in R^2 \times M$, $r_1(r_2, m) = (r_1, r_2) m$; (2)

•
$$
\forall (r, m_1, m_2) \in R \times M^2, r(m_1 + m_2) = rm_1 + rm_2;
$$
 (3)

•
$$
\forall (r_1, r_2, m) \in R^2 \times M
$$
, $(r_1 + r_2)m = r_1m + r_2m$. (4)

Definition 1.2. Under the above conditions, the right module above the *R* ring is called the structure $(M, +, \cdot)$, which has its own attributes:

• $(M, +)$ *is an abelian group*; (1')

•
$$
\forall (m, r_1, r_2) \in M \times R^2
$$
, $(mr_1)r_2 = m(r_1r_2)$; (2')

•
$$
\forall (m_1, m_2, r) \in M^2 \times R
$$
, $(m_1 + m_2)r = m_1r + m_2r$; (3')

•
$$
\forall (m, r_1, r_2) \in M \times R^2, m(r_1 + r_2) = mr_1 + mr_2.
$$
 (4')

The left (right) module above the *R* ring is marked $\binom{M}{n}$ and is called *R*-left module (right). If the left-hand module above *R* is also the right is called a *module* above the *R* ring, in short *R*-module.

If the ring has a single element 11_p (short 1) and the above-mentioned attributes for $_{R} M(M_{R})$ is added the feature

$$
\bullet \ \forall m \in M , 1 \cdot m = m (m \cdot 1 = m)
$$
 (5)

then the module $_R M(M_R)$ is called *the unitary left (right) module* above the *R* ring.

In ongoing, the *R* ring is associated and for a module on such a ring simple naming is used *R-Module*.

Below we will treat the *R*-modules, implying left *R*-modules, since the right *R*-modules are treated analogously.

THEOREM 1.1. A *R-*module *M* enjoys the following attributes:

• $\forall m \in M$, $0_R \cdot m = 0_M$; (6)

•
$$
\forall r \in R, r \cdot 0_M = 0_M;
$$
 (7)

$$
\bullet \bullet \bullet \forall m \in M , \forall r \in R, (-r) \cdot m = r \cdot (-m) = -r \cdot m \in M. \tag{8}
$$

Proof. Let *r* be a fixed element of the *R* ring and *m* any other element of the *RM* module. By Definition 1.1. we have $r \cdot m + 0_R \cdot m = (r + 0_R) \cdot m = r \cdot m$. On the other hand, by the additive group $(M, +)$, we have $r \cdot m + 0_M = r \cdot m$. From here $r \cdot m + 0_R \cdot m = r \cdot m + 0_M$, that gives $0_R \cdot m = 0_M$.

- • $r \cdot 0_M = r \cdot (0_R \cdot m) = (r \cdot 0_R) \cdot m = 0_R \cdot m = 0_M$.
- • $r \cdot m + (-r) \cdot m = (r + (-r))m = 0$ _{*R*} $\cdot m = 0$ _{*R*} $\cdot m = 0$ _{*M*} $\Rightarrow (-r) \cdot m = -r \cdot m$.

2. *R***-Homeomorphisms of** *R***-Modules**

Definition 2.1 [1,6] *R-homomorphism (or R-morphism) of a R-module M in a R-module N is called any reflection f*: *M*→*N having attributes*

• $\vec{u}\vec{u}\vec{u}\vec{v}$ + $\vec{u}\vec{v}\vec{v}$ +

•
$$
f(r \cdot m) = r \cdot f(m), \forall r \in R \text{ and } \forall m \in M
$$
 (10)

(ose
$$
f(m \cdot r) = f(m) \cdot r
$$
, $\forall r \in R$ and $\forall m \in M$).

If *M=N*, then the reflection *f* is called *R*-endomorphism in *M*.

THEOREM 2.1. For every two *R*-modules *M*, *N*, if the reflection *f:* $M \rightarrow N$ is a *R-*homomorphism, then

$$
\bullet \ f(0_M) = 0_N, \tag{11}
$$

$$
\bullet \ f(-m) = -f(m), \forall m \in M \tag{12}
$$

•
$$
f(m_1 - m_2) = f(m_1) - f(m_2), \forall m_1, m_2 \in M
$$
, (13)

Proof. According to (6) and (10) we have $f(0_M) = f(0_R \cdot m) = 0_N f(\theta_M) = \theta_N$.

Further, according to (9),

 $0_{N} = f(0_{M}) = \mathbf{i} \mathbf{i} \mathbf{i} \mathbf{v} + (-1) = (1 + (-1))$,

that tells us $f(-m)$ is the symmetric of $f(m)$ in the group $(N, +)$, so $-f(m) =$ *f*(*-m*). Finally,

$$
f(m_1 \otimes m_2) \otimes f(m_1 \quad (m_2)) \quad f(m_1) \quad f(m_2)
$$

= $f(m_1) + (-f(m_2)) = f(m_1) - f(m_2), \forall m_1, m_2 \in M.$

THEOREM 2.2. For each two **R**-modules *M*, *N*, reflection p_0 : $M \rightarrow N$, defined by $p_0(m)=0$, $\forall m \in M$, is the *R*-homeomorphism *of M* to *N*.

Proof. From the above definition of reflection p_0 we have

 $p_0(m_1+m_2)=0$ _N $=0$ _N $+0$ _N $= p_0(m_1)+p_0(m_2)$, $\forall m_1, m_2 \in M$, which indicates that p_0 enjoys the attribute(9); we also have p_0 (*r* ·*m*)= $0_y = r$ · $\cdot 0_y = r$ · $p_0(m)$, $\forall r \in R$ dhe $\forall m \in M$, which indicates that p_0 also enjoys the attribute (10).

THEOREM 2.3. Identical reflection $I_M : M \to M$ (e.g the reflection defined by $I_M(m) = m, \forall m \in M$ is an **R**-endomorphism in M.

*Proof***.** From the above definition of the identical reflection I_M we have

 $I_M(m_1 + m_2) = m_1 + m_2 = I_M(m_1) + I_M(m_2)$, $\forall m_1, m_2 \in M$, Indicating that the I_M enjoys the attribute (9); we also have

 I_M (r^* ·*m*)= r^* · $m = r^*$ · I_M (*m*), $\forall r \in R$ dhe $\forall m \in M$, which indicates that I_M enjoys the attribute (10).

3. Module $Hom_p(M, N)$ of R-Homeomorphisms of the Modules

The study of homomorphismes of modules bring to the construction of an important module, called the *homomorphism module*.

Let be given the *R*-module *M* and the *R*-module *N*. The set of *R*-homomorphisms from *M* to *N* is written $Hom_R(M, N)$.

Definition 3.1. Let be f, g two possible reflections from *M* to *N* and r an element of an *R* ring. Then:

1. Many of the reflection f with the g reflection, which is written $f + g$, is called reflection $f+g: M \rightarrow N$, *defined* by

 $(f + g)(m) = f(m) + g(m)$, $\forall m \in M$. (14)

- *2.* The opposite reflection of *f* reflection, which is written *-f,* is called reflection $-f: M \rightarrow N$, defined by $(-f)(m) = -f(m)$, $\forall m \in M$. (15)
- *3.* The left product of the reflection f with the element $r \in R$, which is written *rf*, is called the reflection $r f : M \rightarrow N$, defined by $(r \cdot f)(m) = r \cdot f(m)$, $\forall m \in M$. (16) An analogy is given to the meaning and the right production *f*·*r* such that $(f \cdot r)(m) = f(m) \cdot r, \forall m \in M.$

THEOREM 3.1. If the reflections f, g are *R*-homomorphisms from *M* to *N* then:

1. $f+g \in Hom_R(M, N)$, (17)

otherwise, their amount $f+g$ is a **R**-homomorphism from **M** to N; **2.** $-f \in Hom_R(M, N)$, (18)

otherwise, the reverse reflection $-f$ is a *R*-homomorphism from *M* to *N*;

80 Interdisciplinary Journal of Research and Development, Vol. 5, no. 3, 2018

3. For each $r \in R$, where *R* is commutative,

 $r f \in Hom_n(M, N)$, (19)

otherwise, the left (right) production of *f* reflection with elements from *R* is a *R-*homomorphism from *M* to *N.*

*Proof***.**

1. Since the reflections *f, g* are *R*-homomorphisms from *M* to *N*, then (14)

$$
(f+g)(m_1+m_2) = f(m_1+m_2) + g(m_1+m_2)
$$

\n
$$
= [f(m_1) + f(m_2)] + [g(m_1) + g(m_2)]
$$

\n
$$
= [f(m_1) + g(m_1)] + [f(m_2) + g(m_2)]
$$

\n
$$
= (f+g)(m_1) + (f+g)(m_2), \forall m_1, m_2 \in M,
$$

which shows that $f+g$ enjoys the attribute (9); we also have

$$
(f+g)(rm) \stackrel{(14)}{=} f(rm) + g(rm)
$$

\n
$$
\stackrel{(10)}{=} rf(m) + rg(m)
$$

\n
$$
= r[f(m) + g(m)]
$$

\n
$$
\stackrel{(14)}{=} r[(f+g)(m)], \forall r \in R \text{ dhe } \forall m \in M,
$$

which shows that *f*+g enjoys the attribute (10). Consiguently *f*+g \in $Hom_R(M, N)$

2. Reflection *f* is *R*-homomorphism from *M* to *N*, therefore

$$
(-f)(m_1 + m_2) = f(m_1 + m_2) = f(-(m_1 + m_2)) = f(-(m_1) + (-m_2))
$$

\n(9)
\n(10)
\n(11)
\n(15)
\n(16)
\n(17)
\n(18)
\n(19)
\n(19)
\n(10)
\n(11)
\n(15)
\n(19)
\n(19)
\n(10)
\n(11)
\n(15)
\n(19)
\n(19)
\n(10)
\n(11)
\n(10)
\n(11)
\n(12)
\n(15)
\n(16)
\n(17)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(13)
\n(14)
\n(15)
\n(16)
\n(17)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(10)
\n(11)
\n(12)
\n(13)
\n(14)
\n(15)
\n(16)
\n(17)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(13)
\n(15)
\n(16)
\n(19)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(13)
\n(14)
\n(15)
\n(16)
\n(17)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(13)
\n(14)
\n(15)
\n(19)
\n(19)
\n(19)
\n(19)
\n(1

we have (*-f*)(*r* ·*m***)** $f(r^* \cdot m) = f(r^* \cdot (-m)) = r^* \cdot f(-m) = r^* \cdot [-f(m)]$ (15) $= r \cdot [(-f)(m)], \forall r \in R \text{ dhe } \forall m \in M,$ which shows that $-f$ enjoys even the attribute (10). 3. We also have (16)

$$
(rf)(m_1 + m_2) = rf(m_1 + m_2) = r \cdot [f(m_1) + f(m_2)] = rf(m_1) + rf(m_2)
$$

=
$$
(rf)(m_1) + (rf)(m_2), \forall m_1, m_2 \in M,
$$

showing that *r*·*f* has its attribute (9); also, knowing that the *R* ring is commutative we have

$$
(rf)(\rho m) = rf(\rho m)]^{(10)} = r \cdot [\rho f(m)] = (r \rho) \cdot f(m) = (\rho r) \cdot f(m)
$$

= $\rho \cdot [rf(m)] = \rho \cdot [(rf)(m)], \forall \rho \in R \text{ the } \forall m \in M,$
which shows that rf also enjoys attribute (10).

Definition 3.2. *R***-**homomorphism $f+g: M \rightarrow N$ is called *R***-**homeomorphism *f: M* \rightarrow *N* with *R***-**homeomorphism *g: M* \rightarrow *N***,** *R***-homeomorphism -***f* **is called the** opposite *R***-**homeomorphism *f*: $M \rightarrow N$, but **R-**homomorphism r·f (f·r), when *R* is commutative, is called left (right) production of \mathbf{R} -homomorphism $\mathbf{f}: \mathbf{M} \rightarrow \mathbf{N}$ with element r∈R

Through this definition, they are introduced into the set $Hom_R(M, N)$ action of addition $+$ and left (right) multiplication, which make it algebra ($Hom_n(M, N)$, +, ·) with two actions.

THEOREM 3.2. If the *R* ring is commutative, then the algebra ($Hom_{p}(M, N)$, +, ·) of **R**-homeomorphisms from M to N is the **R**-left(right) module.

Proof. We show that they satisfy the conditions (1), (2), (3), (4) of Definition 1.1. of a left *R*-module.

(1) From the above it is easy to see that:

- $\forall f, g, h \in Hom_R(M, N)$ $(f + g) + h = f + (g + h)$.
- $\forall f \in Hom_R(M, N)$ $f + p_0 = f$.
- $\forall f \in Hom_R(M, N), f + (-f) = p_0$.
- $\forall f, g \in Hom_R(M, N)$ $f + g = g + f$

indicating that $Hom_R(M, N)$, +) is an abelian group.

(2) $\forall (r_i, r_j, f) \in R^2 \times Hom_p(M, N)$, writing $g = r_j \cdot f$, we have

$$
[r_1 \cdot (r_2 \cdot f)](m) = (r_1 \cdot g)(m) = r_1 \cdot g(m) = r_1 \cdot [(r_2 \cdot f)(m)] = r_1 \cdot [r_2 \cdot f(m)]
$$

\n(10)
\n(10)
\n(11)
\n(12)
\n(13)
\n(14)
\n(15)
\n(16)
\n(17)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(13)
\n(14)
\n(15)
\n(16)
\n(17)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(16)
\n(19)
\n(10)
\n(10)
\n(11)
\n(10)
\n(11)
\n(12)
\n(13)
\n(14)
\n(15)
\n(16)
\n(17)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(16)
\n(19)
\n(10)
\n(10)
\n(11)
\n(10)
\n(11)
\n(12)
\n(16)
\n(19)
\n(10)
\n(10)
\n(10)
\n(11)
\n(12)
\n(13)
\n(14)
\n(15)
\n(16)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(16)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(16)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(16)
\n(19)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(16)
\n(17)
\n(19)
\n(19)
\n(10)
\n(10)
\n(11)
\n(12)
\n(16)
\

which indicates that $r_1 \cdot (r_2 \cdot f) = (r_1 \cdot r_2) \cdot f$. (3) $\forall (r, f, g)_{\alpha} \in R \times [Hom_R(M, \tilde{N})]^2$ we have $[r(f+g)](m) = r[(f+g)(m)] = r[f(m)+g(m)] = rf(m)+r\cdot g(m)$ **82** Interdisciplinary Journal of Research and Development, Vol. 5, no. 3, 2018

(16) $=(rf)(m)+(r \cdot g)(m) = (rf+r \cdot g)(m), \forall m \in M,$ (14) which indicates that $r(f+g)= r \cdot f + r \cdot g$.

(4)
$$
\forall (r_1, r_2, f) \in R^2 \times Hom_R(M, N)
$$
, we have
\n
$$
[(r_1+r_2) \cdot f](m) = (r_1+r_2) \cdot f(m) = f((r_1+r_2)m) = f(r_1m+r_2m) = f(r_1m) + f(r_2m)
$$
\n
$$
= r_1 \cdot f(m) + r_2 \cdot f(m) = (r_1 \cdot f)(m) + (r_2 \cdot f)(m) = (r_1 \cdot f + r_2 \cdot f)(m), \forall m \in M,
$$

which indicates that $(r_1+r_2)f = r_1 \cdot f + r_2 \cdot f$.

Analogously it is shown that $(Hom_R(M, N), +, \cdot)$ is the right *R*-module when \cdot is right multiplication with elements from R .

References

- Kristaq Filipi, Leksione të shkruara për modulet, Tiranë 2015,
- Kristaq Filipi, ALGJEBRA DHE GJEOMETRIA(ribotim), Tiranë 2015,
- Kristaq Filipi, ALGJEBËR ABSTRAKTE, Tiranë 2013,
- M.Hazewinkel etj., ALGEBRAS, RINGS AND MODULES, 2004.
- E.Ademaj, E. Gashi, ALGJEBRA E PËRGJITHSHME, Prishtinë 1986
- B. Gazidede, Algjebra 1, Tiranë 2006
- Y.Bahturin, Osnovnie strukturi sovremenoj allgebri, Moske 1990.
- Remy Oudompheng, Duality and canonical modules,Spring school in Local Algebra 2009
- Eisenbud D., Commutative Algebra with a view Toward
- Algebraic Geometry, Springer-Verlag New York 1995
- Saunders, MacLane, Homology, Springer –Verlag Berlin 1963